Needlet approximation for isotropic random fields on the sphere
نویسندگان
چکیده
In this paper we establish a multiscale approximation for random fields on the sphere using spherical needlets — a class of spherical wavelets. We prove that the semidiscrete needlet decomposition converges in mean and pointwise senses for weakly isotropic random fields on Sd, d ≥ 2. For numerical implementation, we construct a fully discrete needlet approximation of a smooth 2-weakly isotropic random field on Sd and prove that the approximation error for fully discrete needlets has the same convergence order as that for semidiscrete needlets. Numerical examples are carried out for fully discrete needlet approximations of Gaussian random fields.
منابع مشابه
Asymptotics for spherical needlets
We investigate invariant random fields on the sphere using a new type of spherical wavelets, called needlets. These are compactly supported in frequency and enjoy excellent localization properties in real space, with quasi-exponentially decaying tails. We show that, for random fields on the sphere, the needlet coefficients are asymptotically uncorrelated for any fixed angular distance. This pro...
متن کاملSubsampling needlet coefficients on the sphere
In a recent paper, we analyzed the properties of a new kind of spherical wavelets (called needlets) for statistical inference procedures on spherical random fields; the investigation was mainly motivated by applications to cosmological data. In the present work, we exploit the asymptotic uncorrelation of random needlet coefficients at fixed angular distances to construct subsampling statistics ...
متن کاملSubsampling Needlet Coefficients on the Sphere
In a recent paper, we analyzed the properties of a new kind of spherical wavelets (called needlets) for statistical inference procedures on spherical random fields; the investigation was mainly motivated by applications to cosmological data. In the present work, we exploit the asymptotic uncorrelation of random needlet coefficients at fixed angular distances to construct subsampling statistics ...
متن کاملFiltered polynomial approximation on the sphere
Localised polynomial approximations on the sphere have a variety of applications in areas such as signal processing, geomathematics and cosmology. Filtering is a simple and effective way of constructing a localised polynomial approximation. In this thesis we investigate the localisation properties of filtered polynomial approximations on the sphere. Using filtered polynomial kernels and a speci...
متن کاملSpin Wavelets on the Sphere
In recent years, a rapidly growing literature has focussed on the construction of wavelet systems to analyze functions defined on the sphere. Our purpose in this paper is to generalize these constructions to situations where sections of line bundles, rather than ordinary scalar-valued functions, are considered. In particular, we propose needlet-type spin wavelets as an extension of the needlet ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 216 شماره
صفحات -
تاریخ انتشار 2017